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These results will be applied for designing

noise filters.

V. CONCLUSIONS
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practical

The power transmission coefficient for an optical wave

beam with a Gaussian field distribution through a system

of two aperture stops is obtained by using the beam-mode

expansion method which has been used to know the

diffraction effects of an aperture.

The optimum conditions that maximize the power

transmission coefficient of a fundamental beam mode are

also obtained. These conditions coincide formally with

those given by Kogelnik and Yariv for the incident wave

having a prolate spheroidal-wave function distribution.

The maximum power transmission coefficient can be

represented as a function of only the acceptance factor.

When the noise originated from the spontaneous

emission is added to the incident Gaussian wave beam,

it is important to obtain the maximum signal-to-noise

ratio at the output. This problem could be solved by the

method developed here.

The analysis adopted here can be applied to both

circular and square geometries, which is one of the char-

acteristics of the beam-mode expansion method.
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Analysis of Electromagnetic-Wave Modes

in P&isotropic Slab Waveyide

YUTAKA SATOMURA, MASANORI MATSUHARA, AND NOBUAKI, KUMAGAI, SENIOR MEMBER, IEEE

Abstract—Electromagnetic-wave modes propagating in aniso-

tropic slab waveguide are analyzed theoretically in detail. The propa-

gation conditions are derived under which waves can propagate

along the axis of the guide. A two-dimensional three-layered wave-

guidlng structure consisting of an ankotropic dielectric slab coated
on, or immersed in, isotropic surrounding substrate materials is
considered as a typical configuration of the guide. Field-intensity
distributions of the propagating modes and their propagation con-
stants are obtained by numerical computations. Techniques for
achieving the mode discrhnination and the single-mode operation
are given. Some possible applications in integrated optics are
suggested.

I. INTRODUCTION

THE electromagnetic-wave modes propagating along a

slab waveguide consisting of isotropic materials have

been investigated extensively as a typical boundary
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value problem of electromagnetic-wave theory. For the

last few years, this problem has evoked much interest in

connection with the development of optical integrated

circuits.

On the other hand, the analysis of wave modes in a

slab waveguide with anisotropic materials is also of
great interest from both the theoretical and practical

points of view. To the authors’ knowledge, however, little

work has been done so far on slab waveguides consisting

of anisotropic media, and most of it was restricted to the

guide using magnetized gyrotropic ferrites [1].

Recently, Wang et al. [2] mentioned the possibility y of

forming optical devices such as gyrators, optical switches,

light modulators, etc., using thin-film waveguide with

anisotropic materials as substrates. Nelson and Mc-

Kenna [3] treated the electromagnetic modes of aniso-

tropic dielectric waveguides at p-n junctions, and Andrews

[4] discussed the crystal symmetry effects on nonlinear
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optical processes in optical waveguides. Nevertheless, all

these studies reported previously are limited in only

special cases, and a satisfactory general treatment of the

modes in an anisotropic slab waveguide has not yet been

accomplished.

In the present paper, the wave modes in an anisotropic

slab waveguide coated on, cm embedded in, isotropic

substrate materials are analyxed theoretically in detail.

we start with a general discussion of the wave propaga-

tion in an arbitrary anisotropic material, derive the

dispersion relation, and find the propagation conditions

under which waves can propagate along the axial direction

of the guide.

As a typical model of an anj sotropic slab waveguide, a

two-dimensional three-layered waveguiding structure con-

sisting of an anisotropic dielectric slab and surrounding

isotropic media are considered. The field distributions

and the propagation constants of typical modes are ob-

tained by numerical computations.

A class of this type of waveguide offers an additional

variety of schemes in integrated optics which is currently

a subject of widespread interest.

II. ELECTROMAGNETIC FIELDS IN ANISOTROPIC MEDIA

To begin with, we consider wave propagation in arbi-

trary anisotropic media, and derive the conditions to

maintain waves which can propagate in the specific

direction, the axial direction of the guide.

Anisotropic materials are characterized by tensor

permittivit y and tensor permeability, designated as t and

iL respectively. In the present paper, all the materials
involved are assumed loss free. Both ? and p are then

Hermitian. Physically realizable fields in any charge-

and current-free region of anisotropic medium are governed

by Maxwell’s equations

w=-;

VX H=%
at

together with the constitutive relations

D = ~E

B = jiH

or, in a Cartesian system of coordinates

(1)

(2)

(3)

where the asterisk stands for the complex conjugate. Since

Maxwell’s equations (1) are linear partial-differential

equations with constant coefficients, the field of waves

propagating in the z direction can be represented in terms

of the linear combination of elementary plane waves as

follows [5] :

field = {~ ~ A (o., &) exp [–j(~w + &y)]}
& 1%

.exp(–jf?=z)e~”’ (4)

where exp ( jd) represents sinusoidal time dependence of

the field with angular frequency co, and p., &, ~z are x, y,

and z components, respectively, of the wave vector

associated with elementary plane wave

exp [–j(Da + l% + &z – @ 1

which may yield a field of waves propagating in the specific

direction, the z direction. A (&&j), a function of flz and

~,, is an amplitude of each elementary plane wave. Thus

the space and time derivatives in (1) become

8 d a a

ax =
–m.

a; =
–m,

z=
–m,

ii
= ju.

(5)

Substitution of foregoing relations into (1), jointly with

constitutive relations (2) and (3), leads to the following

homogeneous simultaneous linear algebraic equations:

= o.

(6)

From the condition for a nontrivial solution of the fore-

going equations, the following dispersion relation is ob-

tained:

{ (a@z’ + azbn3& + a3/L2Bv’ + a4@J$? + a5/%4)

+ (a&2 + a@& + C&z) + G} + { (WL3 + b&2Pu

+ b&3v2 + hi%’) + (ML+ M%) 1 = O (7)

where the coefficients ai and b~ are the constants de-

termined by 6,, a, and tensor components of ? and P.

In order that field expression (4) represents the wave

traveling along the z direction, the elementary plane waves

must consist of a pair of complementary wave families

{exp [–j(@zZ + ,%4) ]} exp [–j(@ – @ 1

and

{exp [–j(~~ + B,u) I)* exp [–j(~~z – 41
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Fig. 1. Cross-sectional geometry of sn@so~ropic slab waveguide.

Gmde axis is in the z dmectlon.

giving rise thereby to the wave whose phase velocity

coincides with the z axis. In other words, a solution

(@,,@,) to the dispersion relation (7) must be accompanied
by its complex conjugate solution (–&*, –&*) which

also satisfies the same relation (7). It is equivalent to say

that the quantity in the brackets { ) in (4) must be a

real quantity. In view of the above requirement, it can be

concluded that the tensor components must fulfill the

following conditions, say propagation conditions, to

maintain the waves which can propagate in the z direction

or

= Re (w.) = Re (~~,) = Im (PW) = O. (9)

Only when the condition (8) or (9) is satisfied, anisotropic

materials are capable of transmitting the waves which

propagate in the z direction.

III. ELECTROMAGNETIC-WAVE MODES IN ANISOTROPIC

DIELECTRIC SLAB WAVEGUIDE

As a typical configuration of an anisotropic slab wave-

guide, let us consider a two-dimensional. three-layered

waveguiding structure consisting of an anisotropic

dielectric slab and surrounding isotropic substrate

materials. Cross-sectional geometry of the guide is shown

in Fig. 1, where the axis of the guide is in the z direction.

Regions I and II are isotropic dielectric media, whose

permittivity and permeability y are given by scalar con-

stants, C1,P and Q,I.L, respectively, whereas the dielectric

layer inserted between them is anisotropic and char-

acterized by tensor permittivity e and scalar permeability

p. Because of the propagation conditions (8), the permit-

tivity tensor .?must be of the form

[
%z %/ o

1
(lo)

where the tensor components are assumed to be real

quantities.1

1 The special case where the permittivity tensor has diagonal
terms only will be discussed in the Appendix.

Since the guide is uniform in the y direction, the field is

independent of y, and flu = O. Therefore, (6) becomes

E.

= o. (11)

Hz

From (11) the dispersion relation can be obtained as

follows :

(kz%%z2 – k.21L2 – ka2D2) (k..’ – &2 – 82)

— kwd(kz.z — B=2) = o (12)

where lc~~2 = a2e~~p, kwz = CO%wp,etc. Equation (11),

six homogeneous simultaneous linear equations, is subject

to restrictive condition (12). It turns out that any five

of six equations in (11), together with condition (12),

are sufficient for our purpose. Thus we can eliminate any

one of the field components, H, for instance, from (11).

All other remaining field components are then expressed

by Hz. Eliminating the last equation, (11) can be rewritten

in the form

——

o

b.

o

100
Hz. (13)

H. can be represented by a linear combination of

elementary plane waves, each of which is associated with

a solution of the dispersion relation (12) :

H, = ~ {P. exp ( –j&$) + Q. exp ( ~~..~) } (14)
n=1

where & and –&m (n = 1,2) are the solution to

(12). Here and in the rest of the paper, the term

exp ( —.j@&) exp ( jcd) will be omitted for simplicity.

Equation (14) may also be expressed in the alternative

form

Hz = ~ {A. cos P..x + B. sin&.x) (15)
n=l

in which we have defined

An= Pn+Qn

B. =j(–1’n + Q.). (16)
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An and B. are constants that will be determined by

boundary conditions. Substitution of (14) into (13),

using A ~ and B% defined by (16), yields the remaining

field components. The results are

where

lLw215’z2

an=lc.=’h’z~ – k%.t,f.: – lk’bz’

As we can see from (15) and (17), both H. and E. do not

generally vanish, and hence the wave modes are said to be

hybrid.

On the other hand, the Fields in isotropic dielectric

substrate, region 1, are expressed in the conventional form

Hz = C exp (alZ)

where

E. = ; D $?XP (o!,X)
2

H, = –jpD exp (wx)

E, = j ~ qC exp (alx) (18)
2

al < ((.3,2— lip) 1/2 :> 0, ii? = Co’q.l

and C and D are constants determined by boundary con-

ditions. Similarly, the fields in isotropic dielectric II are

given by

H, = E exp ( –azz)

Hu = – jrl’ exp ( –ci’x)

where

~2 = (L2 — W) 112> 0, k+ = w%2/,L

and E and F are constants determined by boundary

conditions.

The x components of the field in three regions, in aniso-

tropic dielectric slab and isotropic dielectric media I and

II, can be obtained by the following relations:

(20)

All the tangential components of the field must be

continuous across the boundary surfaces x = O and x = d.

Applying these boundary conditions, the coefficients

Al, A,, Bl, Bz, C, D, E, and F appearing in the foregoing

field expressions are determined. The characteristic

equation is also derived by applying the boundary con-

ditions as follows:

sin B,ld osin LL,d { (he’ — k) 2 + (al — az) 2pqr.s

– (alb2c2 + U&cl) (PS + qr) + (b,’ + b,’) qs

+ (a12c22 + aZ2C12)pr ] + cos &d ocos &,d

“ { (al – cd (b1c2 – b2cI) (PQ + m) – (a&lc2 + a2b2cI)

“ (PS + qr) + 2 (ala,c~czpr + blhqs) 1 + cos A,d

“sin ~~,d[(blc’ – b’cl) {alc2(r – p) + b’(q – s) }

+ (al – cd {a2cw(q – S) + @7s(T – P) 11

+ sin ,&,d. cos LL,d[(blcz – b2c1){ – aZCI(T – P)

– bI(q – s)} + (al – a2) {–alc2pr(q – s)

– bqs(r – p)}] + (ahcl + a’blcz) (PS + qr)

– 2 (a1a2c1c2pr + bIb2qs) = O.

IV. NUMERICAL EXAMPLES AND DISCUSSION

According to the theoretical analysis described in the

preceding section, let us illustrate numerically the field-

intensity distributions and, the propagation constants of

the wave modes propagating in an anisotropic dielectric

slab waveguide. The waveguide structure is as shown in

Fig. 1, and the tensor permittivity of an anisotropic

dielectric slab is assumed to be of the form given by (10).

As an example of anisotropic material, let us consider
1 Crvstal whose permittivity tensor isthe electrooptica. .

given by

(22)

EU.= j ‘f SE exp (– c22x)
s

(19)
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Fig. 3. Normalized propagation constant &/ko versus normalized
frequency d/hO with 0 = OO.
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Fig. 4. Normalized propagation constant &/kO versus normalized

frequency d~h, with 9 = 45°.

where ~, q, and ~ are the electrical principal axes of the

crystal. In the Cartesian system of coordinates (z,y,.z),

where the z axis coincides with one of the principal axes

~, asshown in Fig. 2, the permittivity tensor ?becomes

(23)

where

and @is an angle made by the x and ,$ axes, as shown in

Fig. 2. Let us &sume further that,

q$ = (2.5) 2.eo Cl = (1.5) 2.@

e~ = (2.0)2 .,0 @ = Co

err = (2.25 )20~o lJ=#o

l,o~

o
-x

HY

1-1,0

t

I
Region I Anisotropic i Region 11

( substrate ) dielectric ~( air )–
slab

Fig. 5. Electric- and magnetic-field intensity distributions for
d/hO = 0.15, which corresponds to point a in Fig. 4.

A

\ 3
-x

-10.

Region ~ Anisotropic ~ Region ~

( substrate ) dielectric i ( air )
slab

Fig. 6. Electric- and magnetic-field intensity distributions for
d/Ao = 0.85, which corresponds to point b in Fig. 4.

where co and PO are the permittivity and permeability of

free space, respectively. The calculated values of propa-

gation constant pz normalized by the propagation con-

stant in free space IcO[ = w (two) 1/2] are shown ‘in Figs.

3 and 4 as a function of the normalized frequency d/A.

where d is a thickness of the anisotropic dielectric slab

and & ( = 27r/ko) is a free-space wavelength. In Fig. 3

it has been assumed that 0 = 0°, and in Fig. 4 that t? =

45°.

In the case of 0 = 0° (Fig. 3), the off-diagonal term c.y

vanishes, and the permittivity tensor (23) possesses

diagonal terms only. In this special case, the TE-modes

group and the TM-modes group are separable, and, as we

can see from Fig. 3, the normalized propagation constant

(3./?co approaches 2.0 and 2.5, respectively, as the norm-

alized frequency d/~. increases (see the Appendix).

On the contrary, if 6’ # 7r/2.n (n = 0,1,2,0.. ), the

off-diagonal terms in z do not vanish, and the waves are

nonseparable into TE and TM modes of waves. That is,
the waves are said to be hybrid. The couplings occur

between those hybrid modes at particular frequencies at

which the propagation constants of the coupled modes

become identical. We can see this situation typically at

point a, for example, as shown in Fig. 4.

Figs. 5–7 show the calculated electric- and magnetic-

field intensity distributions in the guide for various values

of d/hO, each of which corresponds to the points a, b,

and c, respectively, in Fig. 4. with reference to those

figures, we recognize both Es and H, are finite, namely, the

waves are hybrid modes. The field intensities in both
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Fig. 7. Electric- and magnetic-jield intensity distributions for
d/hO = 0.4, which corresponds to point c in Fig. 4.

substrate material (region I) and the air (region II)

decrease rapidly as normalized frequency d/hj increases,

and the transmitting power tends to concentrate more

and more into the anisotropi c dielectric slab waveguide,

as would be expected.

Finally, we suggest the possibility y of achieving mode

discrimination by choosing the value of tensor com-

ponents in ~ given by (22) appropriately. In the case of

6’ = 0°, for instance, the anisotropie dielectric slab wave-

guide supports only TM modes, provided that the values

of tensor components are chosen in such a way that

6$$> Cl > em, 0=0° (24)

where 61 is a permittivit y of the substrate material;

whereas only TE modes can be maintained, provided that

the condition

qt < Cl < em, 0=0° (25)

is satisfied. To illustrate the above argument, let us assume

that

q: = (2.0) ’2.60 61 = (1.5) 2.%

e,, = (1.25 )’.,0 @=eo

C(r = (1.75)2.60 P=PO

where 0 = 0°, which satisfy condition (24). The propaga-

tion constant calculated With those parameters is shown

in Fig. 8. We can see from Fig. 8 that the TE-modes

group is discriminated as expected. It should be pointed

out further that the single-mode operation (TM1 mode,

in this example) can be achieved by means of a suitable

choice of normalized frequency d/10, as would be seen

from Fig. 8. In a similar manner, when 0 = 90°, we can

eliminate the TM-modes group. This technique for mode

discrimination against unwanted modes and the single-

mode operation would be useful in integrated optics.

V. CONCLUSIONS

The electromagnetic-wave modes propagating in an

anisotropic media have been analyzed theoretically, and

the propagation conditions under which waves can

propagate along the axis of the guide were derived.

TMI
~~” I 7,

15
0 05 1.0

Fig. 8. Normalized propagation constant LL/~0 versus normalized

frequency d/hO for the anisotropic slab waveguide wtilch supports

TM modes only.

A two-dimensional three-layered waveguiding structure

consisting of an anisotropic dielectric slab coated on, or

embedded in, isotropic surrounding materials has been

treated in detail as a typical configuration of the guide.
Field-intensity distributions of the propagating modes

and their propagation constants have been obtained by

numerical computations. Methods for achieving mode

discrimination and single-mode operation have been sug-

gested. A class of anisotropic thin-film or slab wave-

guides using electrooptic or gyrotropic materials seems to

be promising for providing an additional variety of

schemes in integrated optics such as mode converters,

light modulators, optical switches, etc., which are cur-

rently subjects of widespread interest.

APPEN~IX

If the permittivity tensor of anisotropic dielectric

material possesses diagonal terms only, that is, if ? is of

the form

(Al)

the propagating modes can be separated into two groups of

the modes, the TE-modes group and the TM-modes

group.

For the TE-modes group, the field components in an

anisotropic dielectric slab are expressed as

H, = A cos Lx + B sin&X

Ez=o

HU=O

E. = – ~c{jA sin~w –jBcosi3Ac) (A.2)
,

where
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and the characteristic equation is given by

(a1a2 – ~.’) Sin&d+ (al+ CY2)13Z-COS @zd = O (A.3)

where

al = (982 — lcl*) 1/2 > 0 al = (/3=2— 1#) ‘1* >0.

For the TM-modes group, the field components in an

anisotropic dielectric slab are expressed as

Hz=O

E, = ~ {A COSLX + Bsin@=x}
2

H. = b{jAsin/3# –jBcos&c)

Eg=O (A.4)

where

b=%
,fM.

and the characteristic equation is given by

“COS&d = O (A.5)

where

[1]

[2]

[3]

[4]

[5]

al = (pz* — klq) m > () (X2 = (/3.2 — W)llq > 0.
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Electromagnetic-Wave Propagation in the Shielded Ring Line

YVES GARAULT AND CLAUDE FRAY

Abstracf—A theoretical analysis is presented of a periodic struc-

ture consisting of equally spaced perfectly conducting rings. The

dispersion relation satisfied by the Werent modes of the shielded

ring line is determined. This analysis shows that cylindrically sym-

metric modes identical with those of smooth guides snd hybrid

modes can travel in thk periodical structure.

The asymptotic values of the dispersion relation show the different

properties of these hybrid modes. The EH.I modes can be slow,

fast, or can travel at light velocity according to the frequency. The

EH.q (q > 1) modes are fast modes and exchange their cutoff fre-

quencies for particular values of the geometrical parameters of the

structure.

These theoretical predktions sre verified experimentally by re-

cording the dispersion characteristics of the first modes.

For deflecting radio-frequency structures, the fundamental EH1l

mode is interesting. This deflection constant is measured on a

7r/2 wave structure.

I. INTRODUCTION

I N THE SETTING of a research of waveguide struc-

tures for RF separators of ultrarelativistic particles,

we studied the shielded ring line in which the fundamental

Manuscript received March 23, 1973; revised August 1, 1973.
The authors are with the Faculty of Sciences, Microwave Elec-

tronics Laboratory, University of Lmoges, Lmoges, France.

hybrid mode is a very interesting deflector mode. In order

to study this structure, we followed the same method

that Pierce and Field [1] utilized to investigate the propa-

gation of surface waves on the helix. Pierce assumed the

helix to be an ideal cylinder with conduction in the helical

direction only (the “sheath” helix). The space harmonic

fields are then neglected. A more satisfying approach

called the “tape” helix was given by Sensiper [2]. He

assumed the helix to be wound to an infinitely thin con-

ducting tape and took the electric field at the center line

of the tape to be zero. In other respects, he studied a

limiting case of the helix: the open ring line composed of

equally spaced perfectly conducting rings.

The surface waves which travel along this open ring

line are slow waves (VP < c). In the Brillouin diagram
~ = j(~) connecting the wave frequent y to the phase

constant f?, the dispersion characteristics of modes are

only to be found in the slow-wave domain. If we surround

this line with a conducting pipe, the modes can be fast

and the dispersion characteristic intersects the straight

line VP = c and is carried on into the fast-wave domain.

We have developed the partial study of Falnes [3] on the

different modes of this structure.


