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These results will be applied for designing practical
noise filters.
V. CoNcLUSIONS

The power transmission coefficient for an optical wave
beam with a Gaussian field distribution through a system
of two aperture stops is obtained by using the beam-mode
expansion method which has been used to know the
diffraction effects of an aperture.

The optimum conditions that maximize the power
transmission coefficient of a fundamental beam mode are
also obtained. These conditions coincide formally with
those given by Kogelnik and Yariv for the incident wave
having a prolate spheroidal-wave function distribution.
The maximum power transmission coefficient can be
represented as a function of only the acceptance factor.

When the noise originated from the spontaneous
emission is added to the incident Gaussian wave beam,
it is important to obtain the maximum signal-to-noise
ratio at the output. This problem could be solved by the
method developed here.

The analysis adopted here can be applied to both
circular and square geometries, which is one of the char-
acteristics of the beam-mode expansion method.
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Analysis of Electromagnetic-Wave Modes
in Anisotropic Slab W aveguide

YUTAKA SATOMURA, MASANORI MATSUHARA, axp NOBUAKI KUMAGAI, SENIOR MEMBER, IEEE

Abstract—Electromagnetic-wave modes propagating in aniso-
tropic slab waveguide are analyzed theoretically in detail. The propa~
gation conditions are derived under which waves can propagate
along the axis of the guide. A two-dimensional three-layered wave-
guiding structure consisting of an anisotropic dielectric slab coated
on, or immersed in, isotropic surrounding substrate materials is
considered as a typical configuration of the guide. Field-intensity
distributions of the propagating modes and their propagation con-
stants are obtained by numerical computations. Techniques for
achieving the mode discrimination and the single-mode operation
are given. Some possible applications in integrated optics are
suggested.

1. INTRODUCTION

HE: electromagnetic-wave modes propagating along a

slab waveguide consisting of isotropic materials have

been investigated extensively as a typical boundary
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value problem of electromagnetic-wave theory. IFor the
last few years, this problem has evoked much interest in
connection with the development of optical integrated
circuits.

On the other hand, the analysis of wave modes in a
slab waveguide with anisotropic materials is also of
great interest from both the theoretical and practical
points of view. To the authors’ knowledge, however, little
work has been done so far on slab waveguides consisting
of anisotropic media, and most of it was restricted to the
guide using magnetized gyrotropic ferrites [17].

Recently, Wang et al. [2] mentioned the possibility of
forming optical devices such as gyrators, optical switches,
light modulators, ete., using thin-film waveguide with
anisotropic materials as substrates. Nelson and Mec-
Kenna [3] treated the electromagnetic modes of aniso-
tropic dielectric waveguides at p-n junctions, and Andrews
[4] discussed the crystal symmetry effects on nonlinear
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optical processes in optical waveguides. Nevertheless, all
these studies reported previcusly are limited in only
special cases, and a satisfactory general treatment of the
modes in an anisotropic slab waveguide has not yet been
accomplished.

In the present paper, the wave modes in an anisotropic
slab waveguide coated on, cr embedded in, isotropic
substrate materials are analyzed theoretically in detail.
We start with a general discussion of the wave propaga-
tion in an arbitrary anisotropic material, derive the
dispersion relation, and find the propagation conditions
under which waves can propagate along the axial direction
of the guide.

As a typical model of an anisotropic slab waveguide, a
two-dimensional three-layered waveguiding structure con-
sisting of an anisotropic dielectric slab and surrounding
isotropic media are considered. The field distributions
and the propagation constants of typical modes are ob-
tained by numerical computations.

A class of this type of waveguide offers an additional
variety of schemes in integrated optics which is currently
a subject of widespread interest.

II. ELEcTROMAGNETIC FIELDS IN ANISOTROPIC MEDIA

To begin with, we consider wave propagation in arbi-
trary anisotropic media, and derive the conditions to
maintain waves which ean oropagate in the specific
direction, the axial direction of the guide.

Anisotropic materials are characterized by tensor
permittivity and tensor permeability, designated as ¢ and
i, respectively. In the present paper, all the materials
involved are assumed loss free. Both ¢ and g are then
Hermitian. Physically realizable fields in any charge-
and current-free region of anisotropic medium are governed
by Maxwell’s equations
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Py (1)
together with the constitutive relations
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B = uiH
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where the asterisk stands for the complex conjugate. Since
Maxwell’s equations (1) are linear partial-differential
equations with constant coefficients, the field of waves
propagating in the z direction can be represented in terms
of the linear combination of elementary plane waves as
follows [57]: )

field « {SZ % A(B:, By) exp [—j (B + Byy) 1}

4)

where exp ( jwt) represents sinusoidal time dependence of
the field with angular frequency w, and B, 8,, 8. are z, ¥,
and z components, respectively, of the wave vector
associated with elementary plane wave

exp [—j(Bex + Byy + Bz — i) ]

which may yield a field of waves propagating in the specific
direction, the z direction. 4 (8.,8,), a function of 8, and
B,, is an amplitude of each elementary plane wave. Thus
the space and time derivatives in (1) become
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Substitution of foregoing relations into (1), jointly with
constitutive relations (2) and (3), leads to the following
homogeneous simultaneous linear algebraic equations:
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From the condition for a nontrivial solution of the fore-
going equations, the following dispersion relation is ob-
tained:

{(a1Bs* + a2B:8, + 0aB:28,° + auB.B,® + as8,*)
+ (W;ﬂxz + a7ﬁxﬁy + asﬂyz) + a9} -+ {(blﬂxa + bzﬂzzﬂv
+ baﬂ,ﬁyz + b4ﬂy3) + (b5Ba: + bﬁBy)} =0 (7)

where the coefficients a; and b; are the constants de-
termined by 8., w, and tensor components of & and 4.

In order that field expression (4) represents the wave
traveling along the z direction, the elementary plane waves
must consist of a pair of complementary wave families

{exp [—j(Bz2 + Buy) 1} exp [—j(B:z — wt) ]
and

{exp [—j (B + Byy) 1}* exp [—7 (B2 — wt) ]
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Fig. 1. Cross-sectional geometry of an anisotropic slab waveguide.
Guide axis is in the z direction.

giving rise thereby to the wave whose phase velocity
coincides with the 2 axis. In other words, a solution
(B2,8,) to the dispersion relation (7) must be accompanied
by its complex conjugate solution (—B.* —@,*) which
also satisfies the same relation (7). It is equivalent to say
that the quantity in the brackets { } in (4) must be a
real quantity. In view of the above requirement, it can be
concluded that the tensor components must fulfill the
following conditions, say propagation conditions, to
maintain the waves which can propagate in the z direction

€z = € = Pyz = oz = 0 (8)
or
Re () = Re (&) = Im (ex)
= Re (m:) = Re (pzz) = Im (p) = 0. (9)

Only when the condition (8) or (9) is satisfied, anisotropic
materials are capable of transmitting the waves which
propagate in the z direction.

I1I. ELECTROMAGNETIC-WAVE MODES IN ANISOTROPIC
DieLEcTRIC SLAB WAVEGUIDE

As a typical configuration of an anisotropic slab wave-
guide, let us consider a two-dimensional three-layered
waveguiding structure consisting of an anisotropic
dielectric slab and surrounding isotropic substrate
materials. Cross-sectional geometry of the guide is shown
in Fig. 1, where the axis of the guide is in the z direction.
Regions I and II are isotropic dielectric media, whose
permittivity and permeability are given by scalar con-
stants, e,u and e,u, respectively, whereas the dielectric
layer inserted between them is anisotropic and char-
acterized by tensor permittivity & and scalar permeability

w. Because of the propagation conditions (8), the permit-
" tivity tensor ¢ must be of the form

(10)

0 0 e

where the tensor components are assumed to be real
quantities.!

1 The special case where the permittivity tensor has diagonal
terms only will be discussed in the Appendix.

Since the guide is uniform in the y direction, the field is
independent of y, and B, = 0. Therefore, (6) becomes

wew wey 0 0 —B. 0 ) [E.
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From (11) the dispersion relation ecan be obtained as
follows:

(ka:z2kzz2 - kxz26:c2 - kzz2ﬁ22) (kyy2 — 322 - ﬁ:2)
- k:cy4(kzz2 - BZZ) = 0 (12)

where k.. = olemi, kn?® = oleyu, ebe. Equation (11),
six homogeneous simultaneous linear equations, is subject
to restrictive condition (12). It turns out that any five
of six equations in (11), together with condition (12},
are sufficient for our purpose. Thus we can eliminate any
one of the field components, H, for instance, from (11).
All other remaining field coraponents are then expressed
by H.. Eliminating the last equation, (11) can be rewritten
in the form

Wz wey 0 0 —f, E, 0
wey wey O B, 0 E, B
0 0 wwe 0 8| |E|=|0|H. @3
0 B 0 wp O H, 0
—B. 0 B: 0 o H, 0

H, can be represented by a linear combination of
elementary plane waves, each of which is associated with
a solution of the dispersion relation (12):

2

H, =Y {P.exp (—jB:%) + Quexp (jB:2)}

n=1

(14)

where B,, and —B., (»n = 1,2) are the solution to
(12). Here and in the rest of the paper, the term
exp (—jB:2) exp (jwt) will be omitted for simplicity.
Equation (14) may also be expressed in the alternative
form

2
H, = > {A,cos B,z + Bysin B.,z}

(15)
=1
in which we have defined
An = Pn+ Qn
By = j(—Pn+ Qu). (16)
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A, and B, are constants that will be determined by
boundary conditions. Substitution of (14) into (13),
using 4, and B, defined by (16), yields the remaining
field components. The results are

W
B, =£
z

M

an{A, cos Bo,x + Bysin B2}

n=1

2

H, = 3 b,{ jAssin B, & — jBa cos Bs,x}
n=1
(&7 2
E,=— 6_ eof JAn sin B & — jBacosBeet  (17)
2 n=l
where
kxy24322
= k:czzkzzz - kzlegx,,z - kzz2,8z2
b o h2 2 8.
" kx:c2kzz2 _ kza:2;3a:,.2 - kzz26z2 ,81,,
B:
cC = —.
Bz

As we can see from (15) and (17), both H, and E, do not
generally vanish, and hence the wave modes are said to be
hybrid.

On the other hand, the felds in isotropic dielectric
substrate, region I, are expressed in the conventional form

H, = Cexp (o)

E, = ;—”D exp (en)

z

H, = —jpD exp (asx)
E, = jg—” g exp (asz) (18)
where
_ kB
p Ollﬂz 1 (23]

251 = (:8;2 - klz) 12 > O)

k12 = w2€1y.

and C and D are constants determined by boundary con-
ditions. Similarly, the fields in isotropic dielectric II are
given by

H, = Eexp (—agx)

E, = ;—HF exp (—our)

2

H, = — jrF exp (—azx)

E, =j ;’—“ sE exp (—asz) (19)

where

BB
‘XZBz, C(2’

ay = <,8z2 - k22) 1/2 > O,

P

k22 = w2€2u

and E and F are constants determined by boundary
conditions,

The 2 components of the field in three regions, in aniso-
tropic dielectric slab and isotropic dielectric media I and
I, can be obtained by the following relations:

8.

D, =—H, (20)
w
B.--%g, (21)
w

All the tangential components of the field must be
continuous across the boundary surfaces z = 0 and z = d.
Applying these boundary conditions, the coeflicients
Ay, As, By, Be, C, D, E, and F appearing in the foregoing
field expressions are determined. The characteristic
equation is also derived by applying the boundary con-
ditions as follows:

sin Byd-sin B,d{ (bice — bec1)? + (a1 — a2)2pgrs
— (a1bacs + asbicr) (ps + gr) + (b + bo?)gs
+ (ae’ + @’er) pr} + cos Bud- cos Br.d
{(ar — @) (bice — becr) (pg + 18) — (@abicz + a2bscr)
«(ps + gr) + 2(mazcicopr + bibags) } + €08 Buyd
+sin Bod[ (bicz — bacr) {aica(r — p) + ba(q — 8)}
+ (a1 — @) {aeipr(q — ) + bugs(r — p)}]
+ sin Bz,d+ €08 Beyd[ (bicz — bect) { — azci(r — p)
—bi(g — 8)} + (a1 — @) {—acapr(q — s)
— begs(r — p)}] + (aubecs + asbics) (ps + gr)
— 2(aazeicopr + bibags) = 0.
IV. NumEricAL ExampPLES AND DIscUssION

According to the theoretical analysis described in the
preceding section, let us illustrate numerically the field-
intensity distributions and. the propagation constants of
the wave modes propagating in an anisotropic dielectric
slab waveguide. The waveguide structure is as shown in
Fig. 1, and the tensor permittivity of an anisotropic
dielectric slab is assumed to be of the form given by (10).

As an example of anisotropic material, let us consider
the electrooptica! crystal whose permittivity tensor is
given by

@ 0 O

(22)
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2,8
Fig. 2. System of coordinates (z,y,2) used for the analysis and the
electrical principal axes (£,7,¢).

A

Fig. 3. Normalized propagation constant 8./ke versus normalized
frequency d/no with 9 = 0°.

%

Fig. 4. Normalized propagation constant 8,/ke versus normalized
frequency d/Ao with 6 = 45°,

where &, 7, and { are the electrical prineipal axes of the
crystal. In the Cartesian system of coordinates (z,y,2),
where the z axis coincides with one of the principal axes
¢, as shown in Fig. 2, the permittivity tensor ¢ becomes

é=|ey €, O (23)
0 0 e.
where
€z = € 0820 + €, 5102 6
&y = (et — €) sin f-cos 6

€y = €y COS? @ + € sIn? 6
€2z = €

and 6 is an angle made by the z and £ axes, as shown in
Fig. 2. Let us assume further that

(2.5)2-¢ g = (1.5)2%-¢
(2.0)2'60 € = €

€5k

|

€m

gr = (2.25)2-50 Bo= Mo

~O\_Ex

.

-10+
Region |
( substrate )

Anisotropic | Region ][
dielectric | ( air )
siab

Fig. 5. Electric- and magnetic-field intensity distributions for
d/\o = 0.15, which corresponds to point a in Fig. 4.

-10

Region [ |Anisotropic ; Region J[
( substrate ) |dielectric : ( air)
slab |

Fig. 6. Electric- and magnetic-field intensity distributions for
d/h = 0.85, which corresponds to point b in Fig. 4.

where ¢ and pg are the permittivity and permeability of
free space, respectively. The calculated values of propa-
gation constant 8. normalized by the propagation con-
stant in free space ko [ =w(eomo)Y/?] are shown in Figs.
3 and 4 as a function of the normalized frequency d/\,
where d is a thickness of the anisotropic dielectric slab
and N\ (=2w/ky) is a free-space wavelength. In Fig. 3
it has been assumed that 8 = 0°, and in Fig. 4 that § =
45°,

In the case of # = 0° (Fig. 3), the off-diagonal term e,,
vanishes, and the permittivity tensor (23) possesses
diagonal terms only. In this special case, the TE-modes
group and the TM-modes group are separable, and, as we
can see from Fig. 3, the normalized propagation constant
B:/ko approaches 2.0 and 2.5, respectively, as the norm-

‘alized frequency d/)\, increases (see the Appendix).

On the contrary, if 8 # =/2.n (n = 0,1,2,--+), the
off-diagonal terms in ¢ do not vanish, and the waves are
nonseparable into TE and TM modes of waves. That is,
the waves are said to be hybrid. The couplings occur
between those hybrid modes at particular frequencies at
which the propagation constants of the coupled modes
become identical. We can see this situation typically at
point «, for example, as shown in Fig. 4.

Figs. 5-7 show the calculated electric- and magnetic-
field intensity distributions in the guide for various values
of d/hg, each of which corresponds to the points a, b,
and ¢, respectively, in Fig. 4. With reference to those
figures, we recognize both £, and H, are finite, namely, the
waves are hybrid modes. The field intensities in both
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( substrate )
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Fig. 7. Electric- and magneticfield intensity distributions for
d/xe = 0.4, which corresponds to point ¢ in Fig. 4.

substrate material (region I) and the air (region II)
decrease rapidly as normalized frequency d/\, increases,
and the transmitting power tends to concentrate more
and more into the anisotropic dielectric slab waveguide,
as would be expected.

Finally, we suggest the possibility of achieving mode
discrimination by choosing the value of tensor com-
ponents in & given by (22) appropriately. In the case of
8 = 0° for instance, the anisotropic dielectric slab wave-
guide supports only TM modes, provided that the values
of tensor ecomponents are chosen in such a way that
= (°

€ > € > e (24)

where ¢ is a permittivity of the substrate material;
whereas only TE modes can be maintained, provided that
the condition

e < & < e, 6=0° (25)

is satisfied. To illustrate the above argument, let us assume
that

€ = (2.0)%-¢ € (1.5)2-50
(1.25)2'60 € = &
(L75)% ¢  n

I

€y

Il

& = Mo

where 8 = 0°, which satisfy condition (24). The propaga-
tion constant calculated with those parameters is shown
in Fig. 8. We can see from Fig. 8 that the TE-modes
group is discriminated as expected. It should be pointed
out further that the single-mode operation (TM; mode,
in this example) can be achizved by means of a suitable
choice of normalized frequency d/XA,, as would be seen
from Fig. 8. In a similar manner, when 8 = 90°, we can
eliminate the TM-modes group. This technique for mode
discrimination against unwanted modes and the single-
mode operation would be useful in integrated optics.

V. CONCLUSIONS

The electromagnetic-wave modes propagating in an
anisotropic media have been analyzed theoretically, and
the propagation conditions under which waves can
propagate along the axis of the guide were derived.

20
) ™
= | 75}
cb\ T™M2
15 .
) 05 1.0

d
e

Fig. 8. Normalized propagation constant 8,/ke versus normalized
frequency d/A, for the anisotropic slab waveguide which supports
TM modes only.

A two-dimensional three-layered waveguiding structure
consisting of an anisotropic dielectric slab coated om, or
embedded in, isotropic surrounding materials has been
treated in detail as a typical configuration of the guide.
Field-intensity distributions of the propagating modes
and their propagation constants have been obtained by
numerical computations. Methods for achieving mode
discrimination and single-mode operation have been sug-
gested. A class of anisotropic thin-film or slab wave-
guides using electrooptic or gyrotropic materials seems to
be promising for providing an additional variety of
schemes in integrated optics such as mode converters,
light modulators, optical switches, etc., which are cur-
rently subjects of widespread interest.

APPENDIX

If the permittivity tensor of anisotropic dielectric
material possesses diagonal terms only, that is, if ¢ is of
the form

&: 0 0
e=10 ¢, O (A1)
0 0 e

the propagating modes can be separated into two groups of
the modes, the TE-modes group and the TM-modes
group.

For the TE-modes group, the field components in an
anisotropic dielectric slab are expressed as

H, = A cos B,z + B sin Bz

i, =0
H,=0
o L. .
E, = — 5. ¢{ jA sin Bz — jB cos Bor} (A.2)
where
B.
C=E; ﬁxz':sz— 2
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and the characteristic equation is given by
(1o — B2?) sin Bud + (o1 + a2)BzecosB.d =0 (A.3)
where
o= (B2~ k)2 >0 a = (8.2 — k2)V2 > 0.

For the TM-modes group, the field components in an
anisotropic dielectric slab are expressed as

H.=0

=“’_"‘{

E, A cos B,z + B sin Bz}

2

H, = b{ jA sin B,z — jB cos Bz}

E, =0 (A.4)
where
k..2 k.2
— 2 2 =k,2 — 2
b B:B: e k,f‘s

and the characteristic equation is given by

k?le? ) ks?
(Otlol2 - ;‘;zz: 612) s :Bld + (k22z2

ke
ar + k‘i‘z aZ).Bz

ccos B.d =0 (A5)
where

ar= (82— kN2 >0 ay = (B2 — k2)¥2 > 0.
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Electromagnetic-W ave Propagation in the Shielded Ring Line

YVES GARAULT ano CLAUDE FRAY

Abstract—A theoretical analysis is presented of a periodic struc-
ture consisting of equally spaced perfectly conducting rings. The
dispersion relation satisfied by the different modes of the shielded
ring line is determined. This analysis shows that cylindrically sym-
metric modes identical with those of smooth guides and hybrid
modes can travel in this periodical structure.

The asymptotic values of the dispersion relation show the different
properties of these hybrid modes. The EH,; modes can be slow,
fast, or can travel at light velocity according to the frequency. The
EH,; (¢ > 1) modes are fast modes and exchange their cutoff fre-
quencies for particular values of the geometrical parameters of the
structure.

These theoretical predictions are verified experimentally by re-
cording the dispersion characteristics of the first modes.

For deflecting radio-frequency structures, the fundamental EH;,
mode is interesting. This deflection constant is measured on a
w/2 wave structure.

I. InTRODUCTION

N THE SETTING of a research of waveguide struc-
tures for RF separators of ultrarelativistic particles,
we studied the shielded ring line in which the fundamental
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hybrid mode is a very interesting deflector mode. In order
to study this structure, we followed the same method
that Pierce and Field [1] utilized to investigate the propa-
gation of surface waves on the helix. Pierce assumed the
helix to be an ideal eylinder with conduction in the helical
direction only (the “sheath’ helix). The space harmonic
fields are then neglected. A more satisfying approach
called the “tape” helix was given by Sensiper [27]. He
assumed the helix to be wound to an infinitely thin con-
ducting tape and took the electric field at the center line
of the tape to be zero. In other respects, he studied a
limiting case of the helix: the open ring line composed of
equally spaced perfectly conducting rings.

The surface waves which travel along this open ring
line are slow waves (v, < ¢). In the Brillouin diagram
w = f(B) connecting the wave frequency to the phase
constant B, the dispersion characteristics of modes are
only to be found in the slow-wave domain. If we surround
this line with a conducting pipe, the modes can be fast
and the dispersion characteristic intersects the straight
line », = ¢ and is carried on into the fast-wave domain.
We have developed the partial study of Falnes [37 on the
different modes of this structure.



